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Enzyme kinetics, self-organized molecular machines, and parametric resonance
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Different models of enzymatic reactions are discussed and compared with experi@enytchrome
P-450-dependent mono-oxygenase sy$téhe following results are obtained) Every chemical step in the
reaction cycle contains approximately 5—7 subsigpproximately 40—60 steps in the cycléi) In the case
of too many substeps, the reaction cycle can be approximated by a continuous model. A Fokker-Planck
equation is derived with drift and diffusion. The drift coefficient is determined by the measured cycle time
(1.54 9 and the diffusion term by the measured memory ti{28 times the cycle time (iii) The enzymatic
reaction can be influenced by periodic external signals. The action spectrum is described by a stochastic and
parametric resonancgS1063-651X97)04312-2

PACS numbds): 87.10+¢, 87.15.Rn, 87.56.a

INTRODUCTION This approach consists of assuming that the system can be
described by a set of random variables which change either

Many scientists are fascinated by the ability of singlediscretely or continuously in their state space. In the former
macromolecules like enzymatic proteins to act like a wholecase of discrete changes, the state of variables is described
chemical production plant. A physical description of suchby a set of discrete states. The system is characterized by a
small-sized production factories is the topic of this paper. discrete probability distribution function, which is the prob-

A well-made machine or robot in the technical world is ability of the variables being in a certain state at a given
constructed by using mainly deterministic processes, e.g., thiame. The system is assigned a set of transition probabilities
information flux diagram of a computer. One might expectper unit time for the process to go from one state to another.
that small-sized chemical production factorieazymegcan  The form of these transition probabilities depends on the
be understood in the framework of deterministic processegyrocess, and reflects the nature of the interactions in the com-
since the sequence of chemical reactions can be ordered inpgex system. The equation describing the evolution in time of
reaction cyclg1]. But one has to remember that every mac-the probability distribution of the system’s variables is the
roscopic system is subject to fluctuations and noise and, thusp-called master equation, which is a set of differential equa-
the physical state of a system is determined by the interplations, first order in time. To simplify the problem only tran-
of deterministic and stochastic procesg®ls The direction in  sitions between nearest-neighboring states are considered.
which a system will proceed is mainly given by the deter-The random process describing such systems is called a
ministic processes and the speed of state changes by the storivariate birth and death process. When the random vari-
chastic processes. It will be shown how the mean determinables defining the system change continuously, the system is
istic and stochastic process of an enzymatic reaction can heharacterized by a probability density function that satisfies a
determined. A few examples where stochastic and determirsecond-order partial differential equation, the so called
istic processes are involved are as follows: Fokker-Planck equation. The enzyme kinetics will be dis-

(1) Irregular movement of small colloidal particles is cussed in the framework of master equatigiiscrete states
caused by the impacts of the molecules of the liquid. Anas well as of the Fokker-Planck equati@ontinuous states
applied force is the cause for the mean drift of the colloidalThe motion within an enzyme is enormous since every atom
particles[3,4]. performs a movement. But this huge number of modes is

(2) Fluctuations in emission-limited flow in thermionic reduced to two relevant one@) the drift mode, andii) the
diodes is carried by single and independent emitted eleddiffusion mode.
trons. An applied electric field is the cause for the mean drift Next, details of an enzymatic reaction will be discussed.
of the electrong5-7]. But we keep the discussion on the reaction cycle very gen-

(3) Random migration of cells is caused by stochasticeral, so that it can hold for any type. We will demonstrate the
processes in the cellular signal transduction chain. An apprinciple with a very complex enzyme—the cytochrome P-
plied extracellular guiding signal is the cause for the meamt50 mono-oxygenase systef2]. The protein complex,
drift of the cells[8]. consisting of the enzyme P-450 and the NADPH-cytochrome

The modern analysis of stochastic processes was intrd?-450 reductase, can be reconstituted in vjtt8,14. The
duced by Kramer$9] and Brinkman[10]. They treated the protein complex transforms e.g., the substrate, 7-
escape from a potential well as a problem of Brownian mo-ethoxycoumarin, into the product, 7-hydroxycoumarin,
tion in a nonuniform force field. Thus even complex non-which can be detected spectroscopically. The enzyme P-450
equilibrium systems can often be reduced to equilibrium sysis the Rosetta stone among the heme-containing mono-
tems with only a few degrees of freedom by the eliminationoxygenase§12]. This enzyme plays an important role in the
of dynamically nonrelevant variabl¢$1]. oxidative metabolism of lipophilic substrates in eukaryotic
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and prokaryotic specid45,16. The basic biochemical reac- ; llight flash,
tions of this enzyme are known, but the physical description 100 e’
of such small-sized working chemical production plants are ] no flash
not well established. c 80+
At the start of this century, Michaelis and Menten ap- 2
proximated the action of an enzyme by the following reac- £ light flash .!':/:'_ random phase
tion schemd1]: 8% 601 l L1 and
83  lightflash e’ inphase
. EKSESk_E> e PKPE+ 5 é = 401 rd working enzymes
— — . o 1 e
N T
First, the substrate molecuebinds reversible to the enzyme 1 v
E (equilibrium binding coefficienK); second, the enzyme- o328~ 000 -—
substrate complex ES is irreversibly transformed into the 0 1 2 3 4 5 6
enzyme-product complex ERransduction coefficienkg); time t [s]
third, the product molecul® binds reversibly to the enzyme
(equilibrium binding coefficientKp); fourth, the total
amount of enzyme is conservel { ES+EP=E,=const). FIG. 1. The spectroscopica_tlly megsured product conpentration
The production ratedP/dt or the enzyme activity (7-hydroxycoumarin as a function of time at 30 °Q-econstituted
(dP/dt) Eal is system, see Refl14]; fluorescence measurement, see Réfg] and

[18]). The excitation wavelength was 368 nm. The detected
emission wavelength was 4600.5 nm. The second light source

i was adjusted to the action spectrum of the catalytic reati@ve-
dP 1 Kg 1) length: 42@-10 nm; irradiation time: 0.1 s; repetition time: 1.32 s;
at E_OZkE s p energy: 0.27 J/nM P-450The dots are the actual measurement.
+ — 4+ — The straight dashed line is the prediction for in random phase work-
Ks Kp ing enzymes and the solid liristep function for in phase working

(synchronize@lenzymes.
The maximum enzyme activity obtained for high substrate
concentrations $=>Kg) and low product concentration® (
<Kp) is determined by the transduction coefficigptor the
durationt (= 1/kg) of one cycle. In the case of the reconsti- o
tuted P-450 complex, the maximum activity is obtained bycon_<_:entrat|on is high enough. . .
extrapolating the enzyme activity measured at low product (it) Anothe_r met_hod, which is actu_ally use_d, is based on
concentrations to infinite high reductase and substrate corffXt€rnal applied signal. An enzymatic reaction can be en-
centrations. The measured transduction coefficient and cycflaved by an external periodic signal (d there exists an
time are of 0.65 s* and 1.54 s, respectiveljl4]. (The interaction between the external signal and at least one state

cytochrome P-45g,, form is isolated from phenobarbital of the enzymatic reactior(p) the repetition time of the ex-
treated ratg. ternal signal is comparable with the cycle time of the en-

One possible way to obtain the value of the transductiorzyme, (c) the memory time involved in the enzymatic reac-
coefficientkg is the determination of the maximum enzyme tion is large compared with the cycle time, afaii stochastic
activity, but this method is very time and material consum-processes are involved in the enzymatic reaction.
ing. Another method is based on synchronized enzymes The application of periodic light pulses is one technique
[17,18: Usually one has incoherently working enzymes,of synchronizing enzymatic reactions. The reaction rates in
where each enzyme works independently of the other oneshe catalytic cycle can be altered if one of the active groups
The phase relation between the cycles of different enzymesf the enzyme complex absorbs light. The enzyme cycles
is random and, thus, the product concentration in the teswork partially in phasd17,1§ if the repetition time of the
tube increases linearly in timsee the dashed line in Fig).1 light flashes are slightly smaller than the catalytic cycle time
But, in the case of synchronized enzymes, the cycles of thef the free running enzymée.g., a 1.54-s cycle time and
enzymes work with a fixed phase relatiGequal to coher- maximum synchronization at a repetition time of 1.324
ently working enzymesand, thus, the expected product con- typical experimental result of the reconstituted P-450 system
centration in the test tube increases by a step when the pro& shown in Fig. 1. The characteristic cycle time of the free
uct molecules are releaségee the solid line in Fig.)LThe  running enzyme can be determined from the sudden increase
cycle time can be determined by measuring the time differin the product concentration after a synchronization pulse.
ence between two consecutive steps in the product concen- In summary, the transduction coefficiht (=7 1) de-
tration. The memory timer,, describes the randomization scribes the deterministic processes of an enzymatic reaction
process in the phase relation of different working enzymes. las a whole. The cycle time can be obtained fronfi) the
can be determined by measuring the extrapolated produchaximum enzyme activity of nonsynchronized enzymes, and
release at consecutive cycle times as will be shown below. Aii) from sudden changes of product concentration of syn-
few words about synchronization mechanisms: chronized enzymes.

(i) One method is based on an autocatalytic reaction, Next, the enzymatic reaction will be described by using
where the first stage of the cycle is externally reguldfed).  the distinct chemical states of the reaction cycle.

Coherently working enzymes are obtained if a product-
activated enzymatic reaction is assumed and the enzyme
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tion cycle.

FIG. 2. A schematic representation of the reaction cycle of the ) ) ) ]
mono-oxygenase system is shown: Step 1, the substrate mo&cule 1 heM differential equations for aM-step catalytic cycle
(here RH binds to the active grouFe) of the enzyme. Step 2, the Can be solved numerically for known coefficiefitsandby,
coenzyme delivers an electron and reduces the ironto.Ftep 3,  FOr simplicity it is assumed that all steps in the cycle are
an oxygen molecule in the aqueous solution binds to the activéimilar. One might of course envisage more general sce-
group. Step 4, the coenzyme delivers a second electron to the actiit&rios, where not all reaction states are equally likely. We
group. Step 5, two protons of the aqueous solution bind to the activeelieve, however, that our model reduces arbitrariness to a
group, and a water molecule is released from the enzyme. Step 6,zare minimum, still retaining sufficient generality to describe
specific hydrogen bond at the substrate molecule is opened and tideset of reasonable enzyme reaction processes. The following
hydrogen is transferred to the active group. Step 7, a hydroxytesults are calculated.
group is brought from the active group to the substrate molecule. (1) The mean cycle time as well as the width of the cycle
Step 8, the product molecul@ (here: ROH is released from the  time distribution are a function of the transition probabilities.

active group of the enzymes. The cycle time distribution is a sharp peak if the forward
reaction is much faster than the backward reactiore(b,,,),
MODEL OF THE CLASSICAL ENZYME REACTION and the cycle time distribution is a very broad peak if the

forward reaction is comparable with the backward reaction

An enzymatic reaction consists usually of several distinc f. =b,). Typical distributions are shown in Fig. 4
m= ¥m/- . .

chemical reactions. The catalytic cycle of P-450 contains, (2) The product concentration as a function of time is

e.g., eight stateFig. 2, Ref.[20]): The cycle starts when a calculated when all enzymes bind simultaneously a substrate

substrate molecule like 7—-ethoxycoumarin combines Wiﬂ}nolecules at time zero. The product molecuieis released
" o .
the Fé" of the enzyméstep 3, which is then reduced by an with a certain probability accordingly the calculated cycle

'e:Ieez(itrf% r;mozg';até“%dfégﬁg?ﬁj;girgg d ngrr:?i;oNX]gP time distribution. Thus the product concentratiBi(t) for
(nicotinamide F;dénine dinucleotide phosphdt@hen, the small times reflects the integrated cycle time distribution.
pnosp ’ The calculated product concentration increases linearly for

enzyme is oxygenatetstep 3 and a second electron from . . . .
NADPH converts the bound oxygen into the O radical IFoigg;r:)(]as, since the cycles have lost their phase relasiee

(step 4. An internal oxidoreduction ensures, with the forma-
tion of the hydroxylated substrate ang® (steps 5-. In
the last state, the product moleculge.g.,, 7- 0.15
hydroxycoumarihis releasedstep 8 after one characteristic
cycle timer. The enzyme is again ready to bind a new sub-=
strate moleculdstep 1. c
A set of reaction equations characterizes such an enzys 0-10
matic reaction. The rate equation for thith state is(Fig. 3

f

dpm
F__(fm+bm)pm+fmflpmfl+bm+lpm+l- (2)

distribution func
o
S

P, is the probability to find an enzyme in the state The 0.00 700
first term on the right side of this equation describes the
efflux of the probability to the statem+ 1 (forward prob-
ability f;,) and m—1 (backward probabilityb,,), respec- FIG. 4. The calculated reaction cycle distribution. The total
tively. The second and third terms describe the influx fromnumber of steps is kept constari€8). The forward reaction is

the statem—1 andm+ 1, respectively. kept constant. But the ratib,, to f, is altered from 0 to 1.00.

time t [rel. units]
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step height [arb. unit]

T T T T
0 1 2 3 4
normalized time t/t

product concentration (rel. units)

FIG. 6. The(extrapolatedl step height is determined from the
temporal function of the product concentration. The sudden in-
crease in the product concentration is measured at multiples of the
characteristic timer.

enzymes show only medium percentages of synchronization
0 (=~40%). (ii) There are practically no changes in the per-
centage of synchronization if the repetition time of the syn-
chronization pulses is varied.
0.4 These predictions are in contrast to the experimental re-
sults[18]: (i) The reconstituted enzyme complex can be syn-
chronized up to high percentagésver 80%).(ii) A well-
structured synchronization curve is measufege Fig. 2 in
1.9 Ref. [18]). Two peaks with high synchronization are ob-
served. The repetition time for the first peak is between 1.25
2'0 2'5 3'0 and l._5 s, and the r_epetition time fpr the center o_f the second
peak is close to twice the cycle time. The previously pub-
time t [rel. units] lished data[18] are confirmed by recent experimenil]
(Fig. 8; the newly prepared reconstituted enzyme complex
FIG. 5. (a) The calculated product concentration as a function ofhas a slightly enlarged cycle time~2 s). A nonstructured
time. (b) The occupation of the last state in the reaction cycle. Th%ynchronization curve was predicted from a model based on
reaction started at=0. Th_e to_tal number of steps is kept_ constant \y (=8) states, but the actual measured synchronization
(M=8). The forward reaction is kept constant. But the réiido f,  cyrve is well structured. This discrepancy indicates that the
is altered from O to 1.00. enzymatic model used has to be modified.
In summary, the reaction model, based on a small number
of chemical steps in the reaction cycle, failed to explain the
alue of the normalized memory time, the high percentage of

occupation of last state

(3) The occupation of the last stafg in the reaction
cycle is calculatedFig. 5b)]. The calculated curves show
features of a damped oscillator. One important result is thaf
the memory time of the enzymatic reaction,, is short
compared with the cycle time. The normalized memory
time 7, /7 is ~0.42 even in case of no back reaction (
=0). The normalized memory time decreases further in case 04
of a finite back reaction coefficients.

The memory time of an enzymatic reaction can be experi-
mentally determined in the following wal18]: First, the —T
enzymes in a test tube are synchronized by periodically ap- ook
plied synchronization pulsegight flashes. Second, the ex- ' H H 1s
trapolated step height in the product concentration is mea-
sured at multiples of the cycle timé= 7, 27, 3, ... after 01F
the last synchronization pulg#ash (see Fig. 1 in Refl18]).
A typical experimental result is given in Fig. 6. The mea- 0.0 L L L L L
sured normalized memory-timey, /7, of the reconstituted 0 ! 2 8 4 5
P-450 system is large~(2.8+0.5)], but the calculated one, repetition time T [s]
based on eight states, is sma#.42). This discrepancyisa  ig. 7. The calculated synchronization of the enzymatic activity
hint that the enzymatic model used has to be modified. 55 a function of the repetition time of the light flashes is shown. A

(4) The synchronization of the enzymatic reaction by asynchronization of one means that all enzymes work in phase, and

periodic external signal is predicted. The product concentraa synchronization of zero means uncorrelated working enzymes.
tion as a function of time can be calculated if at least one ratehe total number of steps is kept constalt<8). The last step in

coefficient can be altered by an externally applied signalthe reaction cycle was assumed to be light sensitije500 st
The following results are obtaine@ig. 7): (i) The enzy-  (with light) and 10 s (no light). For the other states €1-7),
matic reaction can be enslaved by an external siginalThe  b;=1s?%, andf;=30 s ! were used.

051

03}

synchronization
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FIG. 8. The measured enzymatic activity of the reconstituted

cytochrome P-450 complex is shown as a function of the repetition FIG. 10. A schematic representation of the landscape of an en-
time of the light flashe§21]. zyme is shown.

synchronization, and the well-structured synchronizatiorf€Petition times which are the sum ®f and multiples ofr
curve. Next, the influence of the number of states in the2STn+1=Ti+n7. The calculated small sharp peaks at small
enzymatic reaction will be discussed. repetition times are caused by several flashes in the Time
They are not yet observed in the experiment. The number of
states in the reaction cycle can be estimated by comparing
the calculated synchronization curve with the measured one.
reaction is calculated for different number of statik, in  Cycle. _ _ _
the cycle.ry /7 increases with increasing. The calculated N summary, the number of states in the reaction cycle is
normalized memory timery, /7, is in accordance with the much hlghe_r than the number of distinct chemical states. The
measured one (280.5) for approximately 40—60 states. eight chem|c_al states have to be replaced. by approxmatgly

Second, synchronization curves are calculated for differ40—60 physical states. Thus every chemical state contains
ent numbers of states in the cycle. The synchronization curv@PProximately 5—7 distinct physical states. _
becomes well structured with a high percentage of synchro- What is the meaning of this huge number of states in the
nization for large numbers of states in the reaction cycle. A8nZymatic reaction cycle? The concept of protein dynamics
synchronization curve based on 40 states is shown in Fig. 35 used to understand the drastically increased number of
The basic features of the experimentally determined curv&t@tes in the catalytic cycle. The protein dynamics of heme
are found:(i) The enzyme can be synchronized if the repeti-containing proteins was studied by several research groups
tion time T, of the externally applied pulses is slightly USing low-temperature flash photolysig2]. Their results
smaller than the cycle time:. (i) The enzyme can be syn- made it clear that the relaxation in the heme pocket is ex-
chronized at large repetition times, where the enzyme makd&€mely complex, and the conformational substates of the
n free cycles between two proceeding externally applied®Oteins are important.

pulses. The maximum of the synchronization is obtained for FOr small molecules such asQhe energetic state can be
described by electronic, vibrational, and rotational terms.

Proteins, however, are quite flexible, and have a very large
number of degrees of freedom, which can accept many con-
formations. For them, a fourth term—the conformational
energy—becomes importaf22]. The energy hypersurface
of a protein does not possess just one minimum like the
small molecule @, but consists of a large number of valleys
separated by possibly high ridgésg. 10. The energy land-
scape of a protein consequently is similar to that of other
complex systems such as glasses and spin glasses. Evidence
of the existence of the conformational states comes from,
e.g., different types of observation§) the nonexponential
time-dependence of protein process@s, hole burning and
0.0 — P é — é ‘ inhomogeneous broadening of spectral lines, @ingllarge,
repetition fime T [¢] mhomoge_nequs Debye—Waller factors. _ _
A protein like P-450 can be regarded as a machine which
FIG. 9. The calculated synchronization of the enzymatic activityiS able to perform a special function. The enzymatic reaction
as a function of the repetition time of the light flashes is shown. Theof the cytochrome P-450 can be described by eight chemi-
total number of steps is kept constaM £40): f;=30s* and  cally distinguishable states as shown in Fig. 2. These are
bj=1s? for i=1-35 andf;=500 s ! (with light), f;=10 s %, taxometric states, since each state can by characterized by a
andb;=1s?! for i=36-40. distinct chemical reaction. However, to understand the work-

CONFORMATIONAL SUBSTATES

synchronization
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ing machine every chemically distinguishable state of the P S
protein has to be divided into several conformational sub- \\
states. Thus, instead of having, e.g., eight rate equations, one
deals with 40—60 rate equations. In the case of too many
substates the discrete state variable can be replaced by a
continuous one. Next, the enzymatic reaction will be de-
scribed by using continuous states in the reaction cycle, and
the relevant motion modes are derived.

ENZYME REACTION, BROWNIAN MOTION,

AND FOKKER —PLANCK EQUATION /| = 7\ ?
The state variablen, which characterizes a discrete physi-
cal state in the chemical reaction cycle, will now be replaced ‘{ | ™
by a continuous state variabte The following relation com- |
bines the continuous with the discrete variable 2
2 P'fil
x=mﬁ=mKM. (3) "

M is total number of states in the cycle. The propagation

vector K, (=27/M) describes the state change in the FIG. 11. Schematic representation of the enzymatic reaction.

cycle. The transition probabilitie§; and b; in the master

equation(2) are regarded as dependent. Every cycle starts dx dav

whenx is a multiple of 27, and ends whenr is increased by Yar - dx +I(), @)

2. The forward and backward transition functidi{x) and

b(x), as well as the continuous state probabilit{x), are  with the friction coefficienty, the potentialV(x), and the

periodic functions. stochastic forcd’(t). The position of the inert particle will
The master equatiori2) of the enzymatic reaction is vary stochastically becaudt) is a stochastic quantity, and

transformed into a Fokker-Planck equation if a Taylor seriegonsequently will become a stochastic quantity too. One,

of f(x) andb(x) up to second order is usédee Appendix therefore, may ask for the probability to find the particle in

A), the interval k,x+dx). Becausex is a continuous variable

we may ask for the probability densitl?(x), also often

ap d called the probability distribution. The Langevin equati@h
at 5[ —FO+ a_xD(X)] P(X). 4) " can be transformed into a Fokker-Planck equaffi
The transition probabilitie$(x) andb(x) describe the drift A 9 2
and the diffusion terms; (x) andD(x), respectively. at - ax D00+ (ny (x) |P(x,1) (8)
F(x)=Ku[f(x)—b(x)], (5)  The drift functionD®)(x) is obtained from the deterministic

part of the Langevin equatio@®= — y~* dV/dx. The dif-
1, fusion functionD(®) is obtained from the stochastic part of
D(x)= 5 KulT(x)+b(x)]. (®)  the Langevin equation. One obtaiBs?=y"1 g/2 in case
of white noise[(T"(t))=0 and(T'(t)T'(t"))=qds(t—t'), and
The drift of the state probabilityp(x), through the reaction g quantifies the noise strength
cycle is given by the first term on the right side of Ed), The state of a chemical reaction can be considered in
and the diffusion of the state probabilip(x) by the second analogy to an inert particle in a potential well. The state
term. A physical approach of the enzymatic reaction is schevariablex describes the position within the reaction cycle.
matically shown in Fig. 11. The perpetual motion of the state variable is maintained by
The kinetics of a chemical reaction can be considered irthe thermal energy and the externally supplied energy. One
analogy to the motion of a particle in a double-well potential,can imagine that a fraction of the delivered energy is used,
as Kramerg9] and Brinkman10] have shown. In the stud- €.9., to create large fluctuating shape changes of the enzyme
ies of Brownian motion of inert particles, one is principally complex. Thus one expects a state-dependent stochastic
concerned with the perpetual irregular motion exhibited byforce in the reaction cycle.
particles immersed in a fluid. The perpetual motion of the The Langevin equation, which describes the movement of
Brownian particle is maintained by the collisions with the & substrate molecule through the enzymatic reaction cycle,
molecules of the surrounding liquf@4]. The Brownian par- can be derived24] from the corresponding Fokker-Planck
ticle is kicked by a stochastic force, and it may leave the welequation(4),
and go either to the neighboring left or right well. In the high dx
friction limit, where acceleration is neglected, the force bal- b
ance equation per unit mass for the Brownian particle reads dt h(x)+gCOT (). ©
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As expected, the driving forde(x), as well as the stochastic § 1.0
force g(x)I'(t), are state dependent. A white noise is as-
sumed forI'(t) with a state-dependent strengtlix). The T 43
.. . . . [0} .
driving force h(x) is proportional to the difference of the g
forward and backward reactions. However, in addition, the 8
x-dependent stochastic force creates a drift term, the sog 06
called spurious drift or noise-induced drfig4]. It drives the %
system toward states where the diffusion is decreased. g 04
o]
1 dD@(x) c
=—pDWO(y)— - —— 7 0.2
h(x)=D'*(x) 5 dx (10 .
The stochastic forcg(x) is proportional to the square root 00
of the diffusion termD(?)(x), time t [arb. units]
g(x)=D@(x)"2 (11) FIG. 12. The normalized occupation of the last step is calculated

. by means of the Fokker-Planck equations and shown as a function
The state-dependent stochastic force means that thg time. Att=0 the reaction is switched on.

guasitemperature is a function of the position of the reaction
cycle. Constant transition coefficients
A potential V(x), which is relevant for the enzymatic re-

action, can be derived from the driving forbéx) [11], The Fokker-Planck equation is a parabolic differential

equation if the transition probabilitilsandb are constant,
dV(x)

d J 32
dx 12 Pk Pp2h (16

at X oX

h(x)=—

As expected, this potential is proportional to the integral of ) ] ) ) )
the drift term, D)(x), but, in addition, a function of the This partial differential equation can be solved by making a

state-dependent diffusion term(?(x): separation ansatz

X p(x,t)=eMO(x). 17)
V(x)z—f DY (x)dx+ 1D (x). (13
0 The eigenvaluek are obtained by inserting EQL7) into Eq.
16),
The potential difference per cycle (16
”r A= —ikF—k?D. (18
Av:—f DM (x)dx (14) _
0 The solution then reads
is simply given by the drift term, since the spurious drift * _ )
plays only a role within the cycle. The potential difference p(X,t)=kZ_ (Ce'lxety)) g KDL, (19

has to be supplied from an external source in order to obtain
the same physical state in every cyp\&(x) =V(x+n2m)].

In the case of constant forward and backward reactio
coefficients, the potential is simply a straight line within one
cycle,

I%/vhere the eigenfunctiof (x) is approximated by a Fourier
series

— ikx
V(X)=V(0) = DUx=V(0)—Ky(f—b)x.  (15) 0= 2 Ce. (20

The potential function has a profile of a sawtooth if severalThe complex number€, are given by the starting condi-
cycles are regarded. tions. Solution(19) has the structure of a damped traveling
Our long term goal is to measure the steady-state distriwave (see Fig. 12 The drift term F determines the fre-

bution p(x) within one reaction cycle for synchronized en- quencyw, of the traveling wave,

zymes. Then the experimental results are compared with the-

oretical prediction$Eqg. (4)], where the state-dependent drift, w=—k F=—kKy(f—b). (21
DW(x), and diffusion, D®(x), terms, or the state-

dependent forward,(x), and backwardh(x), reaction coef- As expected, the wave is running clockwise forb and
ficients are fitting functions. We hope to find the predictedcounterclockwise forf<b. No traveling wave is expected
state dependence in the driving force as well as in the stdor zero drift.

chastic force. Next, the Fokker-Planck equation will be The predictions of this simple model can be compared
solved for a special case where the forward and backwardith already performed experimerit) The transduction co-
reaction functions are constants. efficient, kg, can be measured and, thus, the drift térroan
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be determined aB=2wkg . (ii) The diffusion termD deter- 4 3
mines the damping timey, of the traveling wave .
>
1 2 % 3 2
M= = . (22 =
KD KK (f+D) 2
pa 1
This damping timery, is identical with the previously dis- _§ 2
cussed memory time of the enzymatic reactiey). can be S
measured and, thus, the diffusion teBncan be determined & ; 0
asD=1/ry for thek=1 mode. The ratio of drift and diffu- g
sion coefficient is simply the normalized memory time mul- 2
tiplied by 27: 2 0 , . ) . , , , , QI
0.0 0.2 0.4 0.6 0.8 1.0
E _ 2777_'\" (23 reaction coordinate x
D T

FIG. 13. The forward reaction functiof{(x) for various values

In the Michaelis-Menten approximation, the enzymaticof v.
reaction is characterized by one coefficient—the transduction
coefficientkg, which is proportional to the drift coefficient wheref, determines the strength of the reactions, Bpdhe
of the Fokker-Planck equation. The drift coefficient profile within the reaction cyclef, as well asF, should be
F(=2wkg) characterizes the deterministic part of the enzy-determined by experiments. We do not have such detailed
matic reaction. The diffusion coefficie®(=1/ry,) of the  and precise experiments. To proceed further, a simple sinu-
Fokker-Planck equation is a second coefficient which charsoidal reaction profile, as seen in Fig. 13, is assumed:
acterizes the stochastic part of the enzymatic reaction. v(X)=0v cog(x/2). The amplitude of the state-dependent

Next the forward and backward coefficients will be deter'forward reaction function is described By
mined. In the approximation used, one has three unknown The Fokker-Planck equatioid) can be written in dimen-
coefficientsf, b, andKy,, which can be determined by the sjonless units if a dimensionless tinié=fyKyt is intro-
experimentally determined cycle timeg the memory time  quced:
™, and the number of state®). The forward transition
coefficientf and the ratio of backward and forward coeffi-

. d J Ky 02
cient, b/, are fo =0 =~ S {OPOKE )} + 51 S (H(0P(x.)}
M1 1 (M\21 (27
27 7'+ 27 (277) ™' @49
Again, the separation ansatt7) can be used to determine
272 Ty the eigenvalues, since the periodic function is only state but
b M 7 not time dependent. The unknown eigenfunct@®(x) is ap-
P Y s (250  proximated by a Fourier seri¢0).
1422 M The eigenvaluea, are obtained by inserting Eq$l7)
M 7 and (20) into Eq. (27),

One obtainsf=6.5s! and b~0.2 s, with 7=1.54 s, ) R R

7y /7=2.8, andM~60. As expected for a good working MCk=—(ik+3Kyk?){3vCy 1+ (1+30)C+7vCy 1}
chemical production plant, the back reaction coefficient is (28)
very small compared with the forward reaction. Next, the

Fokker-Planck equation will be solved for a state-dependenDne obtains\(C,=0 for k=0. The eigenvalue., is zero,

forward reaction. since the total number of enzymes involved
(27Cy= [p(x)dx#0) is described by the coefficier@,.
State-dependent forward reaction The other eigenvalues, can be calculated in the following

way: Two tridiagonal systems of equations, are obtained by

An enzymagc reaction W'.th Its characterlstp reaCt'o.ntreating separately the symmetric and antisymmetric eigen-
cycle cannot simply be explained by constant drift and d'f'functions®s, and®,, and splitting the eigenvalueinto its

fusion coefficient, since rate-limiting chemical reaction step . . ?

L g ! _ +
are known. Let us assume a scenario with a fast statzr—e al and imaginary parts\= -+ iwi)
dependent forward reactidi{x), but a slow backward reac-

tion b<f, as, e.g.f(x)#0 andb=0. The state-dependent 1 M 1. 1~ _
forward reaction function can be described by a Fourier se- a0Ca | 1+ k2 + 50 |CutavCii1 =0, (29
ries
; - o 1. A
f(x)="fo Ek Fie'™, (26) 10C 1+ 1+ 1+ 50 |Gt 10C:1=0. (30
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FIG. 14. Normalized realg) and imaginary {) part of the first two eigenvalues of the cosine potential are shown.

The solution for the eigenvalues is obtained by solving thes@nction. However, the damping coefficiept;(v), calcu-

tridiagonal equation system by the continued fraction techtated from the state-dependent forward reaction fundiiem

nique[24]. The first and second eigenvalue, are shown as g2)], can be characterized by two featuré$:The damping

function of 1+v in Fig. 14. . reaches a finite value far— — 1. Here, one has to remember
The imaginary part» of the eigenvalue describes the fre- that in this case the frequency of the traveling wave ap-

guency of the traveling wave in the chemical reaction CyCIeproaches zerdii) A power law is obtained fop >0

First, the frequencyw,(v)’ is calculated from Eq(21) by

taking the mean of the forward reaction function

w1(0)'=w1(0)(1+0). In the case of no state-dependent = K2 1(0)(1+0)7. (32

function, the frequency,(0) is Ky fq. In this approxima-

tion, the frequency increases linearly with the amplitacef

the state-dependent forward reaction function. However, th

frequencyw(v) calculated from the state-dependent forward

reaction functiofEg. (30)] can be described by a power law

g’he exponent;=0.66 is determined from Fig. 14.

This calculation shows that the enzymatic reaction cannot
simply be approximated by taking the average of the forward
reaction function. To proceed further, one needs new types
R R of experiments where the substrate molecule is observed dur-
w(v)=Kkw1(0)(1+v)". (31 ing the enzymatic reaction. Next, the Fokker-Planck equation
will be solved for a state- and time-dependent forward reac-

The exponeny, is determined from Fig. 14 to be 0.50. The tion functionf(x,t).
discrepancy between the exact calculation and the approxi-
mation is easy to understand, since the low values of the
forward reaction function are more strongly weighted than
the high values: The traveling wave moves faster as expected An enzymatic reaction can be influenced by an external
from the mean forward reaction approximationi0, and ~ SignalSe,. For example, light can alter the enzymatic reac-
slower if v>0. The wave stops traveling if the forward re- tivity if one of the active groups_of the enzyme complex

L . o .~ absorbs light. We showed experimentally that the enzyme
action is zero at a certain position in the reactior{—1),

! activity can be enhanced by light7] and that the catalytic
and thereby the eigenvalue approaches O. cycle of the enzymes can be synchronized by periodically

The real partu of th_e elgenvalug descrlbgs the damp.'ngapplied light flasheg18]. Let us assume again a scenario
of the traveling wave in thAe chemical reaction cycle. Flrst,With a fast forward reactiofi(x,S,,), but a negligible back-
the damping coefficien,(v)’, is calculated from Eq21)  ward reactiorb~0. In addition, the forward reaction should
by taking the mean forward reaction function pe a function of an extracellular signal. The forward reaction
p1(v)' =w1(0)(1+v). In the case of no state-dependentfunction can be described by a Fourier series
function, the damping coefficieni;(0) is K% fy/2. In this
approximation, the damping coefficient increases linearly f(x)=fq E Fi(So e, (33)
with the amplitude of the state-dependent forward reaction K ¢

State- and time-dependent forward reaction
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1©,(0)| [arb. units]

1/ [arb. units]

FIG. 15. The typical resonance behavior shown for the first eigenfun@igm=0). Five curves with different values ofare plotted
against the inverse of the frequeney

The strength of the enzymatic reaction and its profilefgre The eigenvalue) (= pctiwy), is obtained by inserting

and F (S, respectively, which should be determined by Egs.(33)—(35) into Eqg. (27),

experiments, but we do not have such detailed and precise

experiments. To proceed further, a simple sinusoidal reactio : k_
Twctinwgch=

profile is assumedf(x)=1+z§(t)cos’-(x/2). The amplitude

v (t) =v,sinw't of the state-dependent forward reaction coef- 15 K+l 1o~ kel ~ K+l
ficient is temporal modulated with the external frequency +300Cn-175(VoCn "+ voCy
Note that the drift termh(x,t) in the Langevin equation
(9), as well as the potentid(x,t), are time dependent. Thus
one has a parametric process, and expects that the responsg)is, pioine 0-0 for k=0 andn=0. The real eigen-
maximum when the externally applied frequency is approxi- #o*o '

. . value uq is zero, sincecy is a positive quantity which de-
mately equal to the internal frequendparametric reso- ib Moth total b 0 f P q y
nance. Additionally, one deals with a system where stochas>C1DES The foral NUMBET OF enzymes. .
’ ’ The discussion below will be restricted to the simple case

which is manifested in multstable nonlinear systems driventi#4g0, Where the probabity densip.() is then de-

. ) A . scribed by a sum ofindampedraveling waves,
simultaneously by noise and a weak periodic function. These
stochastic processes can help to change the enzymatic state, ,
and the enzymatic activity can be enhanced if the frequency p(x,t)=2, d, > ckel(netrky
of the externally applied signal is approximately equal to the " k
intrinsic frequency(stochastic resonance

The solution of the Fokker-Planck equation with a peri- inot

odic state- and time-dependent coefficients can be con- :En: d,e " On(X).

structed by using Floquet's theorem

o Ku ~ -
ik+ 7k2){%vocﬁ—i+(1+ 300)CH_ 4

SoRAk=1, 7 (k+1
+Uocn+l+vocn+1)}. (36)

Only the first eigenfunctio® ,(x) is calculated to show the
p(x,t)=e* > d.e ™0 (x). (34  basic features of how an enzyme can be enslaved by an ex-
n ternal signal. Becausg(x,t) must be real® _;(x) is given
by the complex conjugate @ ,(x).
The unknown eigenfunctio® ,(x) can again be expressed | et us now look how®,(x) depends on the frequenay.

by a Fourier series. The general solution then reads For this purpose we determine the quantitiésin depen-
dence ofw and vary the height of the potential The results
p(x,t)=e# > d, >, ckeinoteike, (35)  are given in Fig. 15, wherg®,(0)| is plotted against 4.
n k

The calculated curve demonstrates that the amplitude of the

undamped waves is a function of the external frequency. The
The coefficientsd, andck are given by the starting condi- effect is maximum if the external frequency is approximately
tions. the same as the intrinsic frequency. The calculated maximum
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is very sharp, as actually observed by the experimésgs  we obtain
Fig. 3 of Ref.[18]). An enzymatic reaction can be enslaved
by an external signal, and the model of the parametric and p(x)zf(x_KM)p(X_KM)_f(X)p(X)+b(X+ Kw)
stochastic resonance fits the experimental data very well.
Xp(x+Ky) —b(x)p(x).
SUMMARY . . . .
Taylor expansion of the probabilities is the main step to
The catalytic cycle of an enzyme is quite well approxi- achieve a partial differential equation of the diffusion type.
mated by a set of differential equations, first order in time, if

the number of differential equations is much higher than the ap a%p
number of rate-limiting states. Every chemically well- Pp(X—Kyw)=pX)—Ky—-+ —Kf,,— e
X . . . ox 2 &XZ
defined taxometric state again has several physically well-
distinguished stategonformational statesvhich are impor-
tant for the working enzyme. ap ) a°p
A system having many discrete states can be approxi- POX+Km)=p(x)+ Ky -+ EKMQ

mated by a system having continuous states. The system is
now characterized by a probability density function that sat-, . .
isfies a second-order partial differential equation. The drift}f I\;ve _stop the (_axp.ansmn after the ordéf,,, we obfain the
term is responsible for the mean duration of the catalytic0 owing equation:
reaction and the diffusion term for the width of the cycle
time distribution, or in other words, the drift term is the w_J9 —Kulf(x)—b(x)]+1K3 i[f(x)+b(x)] p(x).
cause for a traveling probability wave within the reaction 9t  dX 27M ax
cycle and the diffusion term is the cause for the damping of (A1)
the traveling wave.
An enzymatic reaction can be enslaved by an externghppPENDIX B: TRIDIAGONAL RECURRENCE RELATION
signal if the damping time is much longer than the cycle
time. In addition, at least one of the rate-limiting steps in the Using matrix notation, Eq(36) can be written as
reaction cycle has to be sensitive to the external signal. . . .
Aich_1+(Ag—inwE)c,+A;C,,1=0. (B1)
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Inserting this in Eq(B1), we obtain recurrence relations be-

APPENDIX A: FOKKER-PLANCK EQUATION tweenS,

p1=—(f1+by)ps+fupm+bop,, S, 1= —{(Ag—inwE)+A;S)} 1A, (B3)

Prm=—(fm+Db +fm_1Pm_1+b : _ o . .
Pn= = (T Bn) Prn+ Fn—1Prn-1% D+ 1Pm--2 Using matrix inversion routines we can solve EB3) nu-

m=2,... M—1, merically up ton=1. At this stage the vect(ﬁ'1 and there-
_ fore all other vectors, can be determined, becausg is
pw=—(futbm)Ppm+fym-1Pm-1+Db1p1. known:
After introducing a new variablg, - -
C1=% Co, (B4)
2 m K
X=27 —=mKy, - -
M M =Sy Sh-1.--S1- S+ Co- (BS)
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