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Enzyme kinetics, self-organized molecular machines, and parametric resonance
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Complex Fluids Group, Biophysics Department, University of Ulm, D89081 Ulm, Germany

and Centre d’E´ cologie Cellulaire, Hoˆpital de la Salpe´trière, 47 Boulevard de l’Hoˆpital, F75651 Paris Cedex 13, France
~Received 11 July 1997!

Different models of enzymatic reactions are discussed and compared with experiments~a cytochrome
P-450-dependent mono-oxygenase system!. The following results are obtained.~i! Every chemical step in the
reaction cycle contains approximately 5–7 substeps~approximately 40–60 steps in the cycle!. ~ii ! In the case
of too many substeps, the reaction cycle can be approximated by a continuous model. A Fokker-Planck
equation is derived with drift and diffusion. The drift coefficient is determined by the measured cycle time
~1.54 s! and the diffusion term by the measured memory time~2.8 times the cycle time!. ~iii ! The enzymatic
reaction can be influenced by periodic external signals. The action spectrum is described by a stochastic and
parametric resonance.@S1063-651X~97!04312-2#

PACS number~s!: 87.10.1e, 87.15.Rn, 87.50.2a
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INTRODUCTION

Many scientists are fascinated by the ability of sing
macromolecules like enzymatic proteins to act like a wh
chemical production plant. A physical description of su
small-sized production factories is the topic of this paper

A well-made machine or robot in the technical world
constructed by using mainly deterministic processes, e.g.
information flux diagram of a computer. One might expe
that small-sized chemical production factories~enzymes! can
be understood in the framework of deterministic process
since the sequence of chemical reactions can be ordered
reaction cycle@1#. But one has to remember that every ma
roscopic system is subject to fluctuations and noise and, t
the physical state of a system is determined by the interp
of deterministic and stochastic processes@2#. The direction in
which a system will proceed is mainly given by the det
ministic processes and the speed of state changes by the
chastic processes. It will be shown how the mean determ
istic and stochastic process of an enzymatic reaction ca
determined. A few examples where stochastic and determ
istic processes are involved are as follows:

~1! Irregular movement of small colloidal particles
caused by the impacts of the molecules of the liquid.
applied force is the cause for the mean drift of the colloi
particles@3,4#.

~2! Fluctuations in emission-limited flow in thermioni
diodes is carried by single and independent emitted e
trons. An applied electric field is the cause for the mean d
of the electrons@5–7#.

~3! Random migration of cells is caused by stochas
processes in the cellular signal transduction chain. An
plied extracellular guiding signal is the cause for the me
drift of the cells@8#.

The modern analysis of stochastic processes was in
duced by Kramers@9# and Brinkman@10#. They treated the
escape from a potential well as a problem of Brownian m
tion in a nonuniform force field. Thus even complex no
equilibrium systems can often be reduced to equilibrium s
tems with only a few degrees of freedom by the eliminat
of dynamically nonrelevant variables@11#.
561063-651X/97/56~6!/7116~12!/$10.00
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This approach consists of assuming that the system ca
described by a set of random variables which change ei
discretely or continuously in their state space. In the form
case of discrete changes, the state of variables is desc
by a set of discrete states. The system is characterized
discrete probability distribution function, which is the pro
ability of the variables being in a certain state at a giv
time. The system is assigned a set of transition probabili
per unit time for the process to go from one state to anoth
The form of these transition probabilities depends on
process, and reflects the nature of the interactions in the c
plex system. The equation describing the evolution in time
the probability distribution of the system’s variables is t
so-called master equation, which is a set of differential eq
tions, first order in time. To simplify the problem only tran
sitions between nearest-neighboring states are conside
The random process describing such systems is calle
univariate birth and death process. When the random v
ables defining the system change continuously, the syste
characterized by a probability density function that satisfie
second-order partial differential equation, the so cal
Fokker-Planck equation. The enzyme kinetics will be d
cussed in the framework of master equations~discrete states!
as well as of the Fokker-Planck equation~continuous states!.
The motion within an enzyme is enormous since every at
performs a movement. But this huge number of modes
reduced to two relevant ones:~i! the drift mode, and~ii ! the
diffusion mode.

Next, details of an enzymatic reaction will be discuss
But we keep the discussion on the reaction cycle very g
eral, so that it can hold for any type. We will demonstrate
principle with a very complex enzyme—the cytochrome
450 mono-oxygenase system@12#. The protein complex,
consisting of the enzyme P-450 and the NADPH-cytochro
P-450 reductase, can be reconstituted in vitro@13,14#. The
protein complex transforms e.g., the substrate,
ethoxycoumarin, into the product, 7-hydroxycoumar
which can be detected spectroscopically. The enzyme P-
is the Rosetta stone among the heme-containing mo
oxygenases@12#. This enzyme plays an important role in th
oxidative metabolism of lipophilic substrates in eukaryo
7116 © 1997 The American Physical Society
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56 7117ENZYME KINETICS, SELF-ORGANIZED MOLECULAR . . .
and prokaryotic species@15,16#. The basic biochemical reac
tions of this enzyme are known, but the physical descript
of such small-sized working chemical production plants
not well established.

At the start of this century, Michaelis and Menten a
proximated the action of an enzyme by the following rea
tion scheme@1#:

S1E

KS

ES→
kE

EP

KP

E1P.

First, the substrate moleculeS binds reversible to the enzym
E ~equilibrium binding coefficientKS); second, the enzyme
substrate complex ES is irreversibly transformed into
enzyme-product complex EP~transduction coefficientkE);
third, the product moleculeP binds reversibly to the enzym
~equilibrium binding coefficient KP); fourth, the total
amount of enzyme is conserved (E1ES1EP5E05const).
The production rate dP/dt or the enzyme activity
(dP/dt)E0

21 is

dP

dt

1

E0
5kE

S

KS

11
S

KS
1

P

KP

. ~1!

The maximum enzyme activity obtained for high substr
concentrations (S@KS) and low product concentrations (P
!KP) is determined by the transduction coefficientkE or the
durationt (51/kE) of one cycle. In the case of the recons
tuted P-450 complex, the maximum activity is obtained
extrapolating the enzyme activity measured at low prod
concentrations to infinite high reductase and substrate
centrations. The measured transduction coefficient and c
time are of 0.65 s21 and 1.54 s, respectively@14#. ~The
cytochrome P-4502B1 form is isolated from phenobarbita
treated rats.!

One possible way to obtain the value of the transduct
coefficientkE is the determination of the maximum enzym
activity, but this method is very time and material consu
ing. Another method is based on synchronized enzym
@17,18#: Usually one has incoherently working enzyme
where each enzyme works independently of the other o
The phase relation between the cycles of different enzy
is random and, thus, the product concentration in the
tube increases linearly in time~see the dashed line in Fig. 1!.
But, in the case of synchronized enzymes, the cycles of
enzymes work with a fixed phase relation~equal to coher-
ently working enzymes! and, thus, the expected product co
centration in the test tube increases by a step when the p
uct molecules are released~see the solid line in Fig. 1!. The
cycle time can be determined by measuring the time dif
ence between two consecutive steps in the product con
tration. The memory timetM describes the randomizatio
process in the phase relation of different working enzyme
can be determined by measuring the extrapolated pro
release at consecutive cycle times as will be shown below
few words about synchronization mechanisms:

~i! One method is based on an autocatalytic react
where the first stage of the cycle is externally regulated@19#.
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Coherently working enzymes are obtained if a produ
activated enzymatic reaction is assumed and the enz
concentration is high enough.

~ii ! Another method, which is actually used, is based
external applied signal. An enzymatic reaction can be
slaved by an external periodic signal if~a! there exists an
interaction between the external signal and at least one s
of the enzymatic reaction,~b! the repetition time of the ex-
ternal signal is comparable with the cycle time of the e
zyme,~c! the memory time involved in the enzymatic rea
tion is large compared with the cycle time, and~d! stochastic
processes are involved in the enzymatic reaction.

The application of periodic light pulses is one techniq
of synchronizing enzymatic reactions. The reaction rates
the catalytic cycle can be altered if one of the active grou
of the enzyme complex absorbs light. The enzyme cyc
work partially in phase@17,18# if the repetition time of the
light flashes are slightly smaller than the catalytic cycle tim
of the free running enzyme~e.g., a 1.54-s cycle time an
maximum synchronization at a repetition time of 1.32 s!. A
typical experimental result of the reconstituted P-450 sys
is shown in Fig. 1. The characteristic cycle time of the fr
running enzyme can be determined from the sudden incre
in the product concentration after a synchronization puls

In summary, the transduction coefficientkE (5t21) de-
scribes the deterministic processes of an enzymatic reac
as a whole. The cycle timet can be obtained from~i! the
maximum enzyme activity of nonsynchronized enzymes, a
~ii ! from sudden changes of product concentration of s
chronized enzymes.

Next, the enzymatic reaction will be described by usi
the distinct chemical states of the reaction cycle.

FIG. 1. The spectroscopically measured product concentra
~7-hydroxycoumarin! as a function of time at 30 °C~reconstituted
system, see Ref.@14#; fluorescence measurement, see Refs.@17# and
@18#!. The excitation wavelength was 36568 nm. The detected
emission wavelength was 460610.5 nm. The second light sourc
was adjusted to the action spectrum of the catalytic reaction~wave-
length: 420610 nm; irradiation time: 0.1 s; repetition time: 1.32
energy: 0.27 J/nM P-450!. The dots are the actual measureme
The straight dashed line is the prediction for in random phase w
ing enzymes and the solid line~step function! for in phase working
~synchronized! enzymes.
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7118 56MANFRED SCHIENBEIN AND HANS GRULER
MODEL OF THE CLASSICAL ENZYME REACTION

An enzymatic reaction consists usually of several disti
chemical reactions. The catalytic cycle of P-450 conta
e.g., eight states~Fig. 2, Ref.@20#!: The cycle starts when a
substrate molecule like 7–ethoxycoumarin combines w
the Fe31 of the enzyme~step 1!, which is then reduced by a
electron originating from NADPH~energy source! to the
Fe21 form ~step 2!. @NADPH is the reduced form of NADP
~nicotinamide adenine dinucleotide phosphate!.# Then, the
enzyme is oxygenated~step 3! and a second electron from
NADPH converts the bound oxygen into the O2

2 radical
~step 4!. An internal oxidoreduction ensures, with the form
tion of the hydroxylated substrate and H2O ~steps 5–7!. In
the last state, the product molecule~e.g., 7-
hydroxycoumarin! is released~step 8! after one characteristic
cycle timet. The enzyme is again ready to bind a new su
strate molecule~step 1!.

A set of reaction equations characterizes such an e
matic reaction. The rate equation for themth state is~Fig. 3!

dpm

dt
52~ f m1bm!pm1 f m21pm211bm11pm11 . ~2!

pm is the probability to find an enzyme in the statem. The
first term on the right side of this equation describes
efflux of the probability to the statesm11 ~forward prob-
ability f m) and m21 ~backward probabilitybm), respec-
tively. The second and third terms describe the influx fro
the statem21 andm11, respectively.

FIG. 2. A schematic representation of the reaction cycle of
mono-oxygenase system is shown: Step 1, the substrate molecS
~here RH! binds to the active group~Fe! of the enzyme. Step 2, th
coenzyme delivers an electron and reduces the iron to Fe21. Step 3,
an oxygen molecule in the aqueous solution binds to the ac
group. Step 4, the coenzyme delivers a second electron to the a
group. Step 5, two protons of the aqueous solution bind to the ac
group, and a water molecule is released from the enzyme. Step
specific hydrogen bond at the substrate molecule is opened an
hydrogen is transferred to the active group. Step 7, a hydro
group is brought from the active group to the substrate molec
Step 8, the product moleculeP ~here: ROH! is released from the
active group of the enzymes.
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TheM differential equations for anM -step catalytic cycle
can be solved numerically for known coefficientsf m andbm .
For simplicity it is assumed that all steps in the cycle a
similar. One might of course envisage more general s
narios, where not all reaction states are equally likely. W
believe, however, that our model reduces arbitrariness
bare minimum, still retaining sufficient generality to descri
a set of reasonable enzyme reaction processes. The follo
results are calculated.

~1! The mean cycle time as well as the width of the cyc
time distribution are a function of the transition probabilitie
The cycle time distribution is a sharp peak if the forwa
reaction is much faster than the backward reaction (f m@bm),
and the cycle time distribution is a very broad peak if t
forward reaction is comparable with the backward react
( f m>bm). Typical distributions are shown in Fig. 4.

~2! The product concentration as a function of time
calculated when all enzymes bind simultaneously a subst
moleculeS at time zero. The product moleculeP is released
with a certain probability accordingly the calculated cyc
time distribution. Thus the product concentrationP(t) for
small times reflects the integrated cycle time distributio
The calculated product concentration increases linearly
long times, since the cycles have lost their phase relation@see
Fig. 5~a!#.

e
e

e
ive
ve
, a
the
yl
e.

FIG. 3. A schematic representation of themth step in the reac-
tion cycle.

FIG. 4. The calculated reaction cycle distribution. The to
number of steps is kept constant (N58). The forward reaction is
kept constant. But the ratiobn to f n is altered from 0 to 1.00.
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56 7119ENZYME KINETICS, SELF-ORGANIZED MOLECULAR . . .
~3! The occupation of the last stateP8 in the reaction
cycle is calculated@Fig. 5~b!#. The calculated curves show
features of a damped oscillator. One important result is
the memory time of the enzymatic reaction,tM , is short
compared with the cycle timet. The normalized memory
time tM /t is '0.42 even in case of no back reactionb
50). The normalized memory time decreases further in c
of a finite back reaction coefficients.

The memory time of an enzymatic reaction can be exp
mentally determined in the following way@18#: First, the
enzymes in a test tube are synchronized by periodically
plied synchronization pulses~light flashes!. Second, the ex-
trapolated step height in the product concentration is m
sured at multiples of the cycle time,t5t, 2t, 3t, ... after
the last synchronization pulse~flash! ~see Fig. 1 in Ref.@18#!.
A typical experimental result is given in Fig. 6. The me
sured normalized memory-time,tM /t, of the reconstituted
P-450 system is large@'(2.860.5)#, but the calculated one
based on eight states, is small ('0.42). This discrepancy is
hint that the enzymatic model used has to be modified.

~4! The synchronization of the enzymatic reaction by
periodic external signal is predicted. The product concen
tion as a function of time can be calculated if at least one
coefficient can be altered by an externally applied sign
The following results are obtained~Fig. 7!: ~i! The enzy-
matic reaction can be enslaved by an external signal.~ii ! The

FIG. 5. ~a! The calculated product concentration as a function
time. ~b! The occupation of the last state in the reaction cycle. T
reaction started att50. The total number of steps is kept consta
~M58!. The forward reaction is kept constant. But the ratiobn to f n

is altered from 0 to 1.00.
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enzymes show only medium percentages of synchroniza
('40%). ~iii ! There are practically no changes in the pe
centage of synchronization if the repetition time of the sy
chronization pulses is varied.

These predictions are in contrast to the experimental
sults@18#: ~i! The reconstituted enzyme complex can be s
chronized up to high percentages~over 80%).~ii ! A well-
structured synchronization curve is measured~see Fig. 2 in
Ref. @18#!. Two peaks with high synchronization are o
served. The repetition time for the first peak is between 1
and 1.5 s, and the repetition time for the center of the sec
peak is close to twice the cycle time. The previously pu
lished data@18# are confirmed by recent experiments@21#
~Fig. 8; the newly prepared reconstituted enzyme comp
has a slightly enlarged cycle timet'2 s!. A nonstructured
synchronization curve was predicted from a model based
M ~58! states, but the actual measured synchroniza
curve is well structured. This discrepancy indicates that
enzymatic model used has to be modified.

In summary, the reaction model, based on a small num
of chemical steps in the reaction cycle, failed to explain
value of the normalized memory time, the high percentage

f
e
t

FIG. 6. The~extrapolated! step height is determined from th
temporal function of the product concentration. The sudden
crease in the product concentration is measured at multiples o
characteristic timet.

FIG. 7. The calculated synchronization of the enzymatic activ
as a function of the repetition time of the light flashes is shown
synchronization of one means that all enzymes work in phase,
a synchronization of zero means uncorrelated working enzym
The total number of steps is kept constant (M58). The last step in
the reaction cycle was assumed to be light sensitivef 85500 s21

~with light! and 10 s21 ~no light!. For the other states (i 51 – 7),
bi51 s21, and f i530 s21 were used.
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7120 56MANFRED SCHIENBEIN AND HANS GRULER
synchronization, and the well-structured synchronizat
curve. Next, the influence of the number of states in
enzymatic reaction will be discussed.

CONFORMATIONAL SUBSTATES

First, the normalized memory timetM /t of the enzymatic
reaction is calculated for different number of states,M , in
the cycle.tM /t increases with increasingM . The calculated
normalized memory time,tM /t, is in accordance with the
measured one (2.860.5) for approximately 40–60 states.

Second, synchronization curves are calculated for dif
ent numbers of states in the cycle. The synchronization cu
becomes well structured with a high percentage of synch
nization for large numbers of states in the reaction cycle
synchronization curve based on 40 states is shown in Fig
The basic features of the experimentally determined cu
are found:~i! The enzyme can be synchronized if the repe
tion time T1 of the externally applied pulses is slight
smaller than the cycle time,t. ~ii ! The enzyme can be syn
chronized at large repetition times, where the enzyme ma
n free cycles between two proceeding externally appl
pulses. The maximum of the synchronization is obtained

FIG. 8. The measured enzymatic activity of the reconstitu
cytochrome P-450 complex is shown as a function of the repeti
time of the light flashes@21#.

FIG. 9. The calculated synchronization of the enzymatic activ
as a function of the repetition time of the light flashes is shown. T
total number of steps is kept constant (M540): f i530 s21 and
bi51 s21 for i 51 – 35 andf i5500 s21 ~with light!, f i510 s21,
andbi51 s21 for i 536–40.
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repetition times which are the sum ofT1 and multiples oft
asTn115T11nt. The calculated small sharp peaks at sm
repetition times are caused by several flashes in the timeT1.
They are not yet observed in the experiment. The numbe
states in the reaction cycle can be estimated by compa
the calculated synchronization curve with the measured o
This rough estimation leads to 40–60 states in the reac
cycle.

In summary, the number of states in the reaction cycle
much higher than the number of distinct chemical states.
eight chemical states have to be replaced by approxima
40–60 physical states. Thus every chemical state cont
approximately 5–7 distinct physical states.

What is the meaning of this huge number of states in
enzymatic reaction cycle? The concept of protein dynam
is used to understand the drastically increased numbe
states in the catalytic cycle. The protein dynamics of he
containing proteins was studied by several research gro
using low-temperature flash photolysis@22#. Their results
made it clear that the relaxation in the heme pocket is
tremely complex, and the conformational substates of
proteins are important.

For small molecules such as O2, the energetic state can b
described by electronic, vibrational, and rotational term
Proteins, however, are quite flexible, and have a very la
number of degrees of freedom, which can accept many c
formations. For them, a fourth term—the conformation
energy—becomes important@22#. The energy hypersurfac
of a protein does not possess just one minimum like
small molecule O2, but consists of a large number of valley
separated by possibly high ridges~Fig. 10!. The energy land-
scape of a protein consequently is similar to that of ot
complex systems such as glasses and spin glasses. Evid
of the existence of the conformational states comes fro
e.g., different types of observations:~i! the nonexponentia
time-dependence of protein processes,~ii ! hole burning and
inhomogeneous broadening of spectral lines, and~iii ! large,
inhomogeneous Debye–Waller factors.

A protein like P-450 can be regarded as a machine wh
is able to perform a special function. The enzymatic react
of the cytochrome P-450 can be described by eight che
cally distinguishable states as shown in Fig. 2. These
taxometric states, since each state can by characterized
distinct chemical reaction. However, to understand the wo

d
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y
e

FIG. 10. A schematic representation of the landscape of an
zyme is shown.
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56 7121ENZYME KINETICS, SELF-ORGANIZED MOLECULAR . . .
ing machine every chemically distinguishable state of
protein has to be divided into several conformational s
states. Thus, instead of having, e.g., eight rate equations
deals with 40–60 rate equations. In the case of too m
substates the discrete state variable can be replaced
continuous one. Next, the enzymatic reaction will be d
scribed by using continuous states in the reaction cycle,
the relevant motion modes are derived.

ENZYME REACTION, BROWNIAN MOTION,
AND FOKKER –PLANCK EQUATION

The state variablem, which characterizes a discrete phys
cal state in the chemical reaction cycle, will now be replac
by a continuous state variablex. The following relation com-
bines the continuous with the discrete variable

x5m
2p

M
5mKM . ~3!

M is total number of states in the cycle. The propagat
vector KM (52p/M ) describes the state change in t
cycle. The transition probabilitiesf i and bi in the master
equation~2! are regarded asx dependent. Every cycle star
whenx is a multiple of 2p, and ends whenx is increased by
2p. The forward and backward transition functionsf (x) and
b(x), as well as the continuous state probabilityp(x), are
periodic functions.

The master equation~2! of the enzymatic reaction is
transformed into a Fokker-Planck equation if a Taylor ser
of f (x) andb(x) up to second order is used~see Appendix
A!,

]p

]t
5

]

]xH 2F~x!1
]

]x
D~x!J p~x!. ~4!

The transition probabilitiesf (x) andb(x) describe the drift
and the diffusion terms,F(x) andD(x), respectively.

F~x!5KM@ f ~x!2b~x!#, ~5!

D~x!5
1

2
KM

2 @ f ~x!1b~x!#. ~6!

The drift of the state probability,p(x), through the reaction
cycle is given by the first term on the right side of Eq.~4!,
and the diffusion of the state probabilityp(x) by the second
term. A physical approach of the enzymatic reaction is sc
matically shown in Fig. 11.

The kinetics of a chemical reaction can be considered
analogy to the motion of a particle in a double-well potenti
as Kramers@9# and Brinkman@10# have shown. In the stud
ies of Brownian motion of inert particles, one is principal
concerned with the perpetual irregular motion exhibited
particles immersed in a fluid. The perpetual motion of t
Brownian particle is maintained by the collisions with th
molecules of the surrounding liquid@24#. The Brownian par-
ticle is kicked by a stochastic force, and it may leave the w
and go either to the neighboring left or right well. In the hig
friction limit, where acceleration is neglected, the force b
ance equation per unit mass for the Brownian particle re
e
-
ne
y

y a
-
nd

d

n

s

e-

in
,

y
e

ll

-
s

g
dx

dt
52

dV

dx
1G~ t !, ~7!

with the friction coefficientg, the potentialV(x), and the
stochastic forceG(t). The position of the inert particle will
vary stochastically becauseG(t) is a stochastic quantity, an
consequentlyx will become a stochastic quantity too. On
therefore, may ask for the probability to find the particle
the interval (x,x1dx). Becausex is a continuous variable
we may ask for the probability densityP(x), also often
called the probability distribution. The Langevin equation~7!
can be transformed into a Fokker-Planck equation@24#

]P

]t
5

]

]xS 2D ~1!~x!1
]

]x
D ~2!~x! D P~x,t ! ~8!

The drift functionD (1)(x) is obtained from the deterministi
part of the Langevin equation,D (1)52g21 dV/dx. The dif-
fusion functionD (2) is obtained from the stochastic part o
the Langevin equation. One obtainsD (2)5g21 q/2 in case
of white noise@^G(t)&50 and^G(t)G(t8)&5qd(t2t8), and
q quantifies the noise strength#.

The state of a chemical reaction can be considered
analogy to an inert particle in a potential well. The sta
variablex describes the position within the reaction cyc
The perpetual motion of the state variable is maintained
the thermal energy and the externally supplied energy. O
can imagine that a fraction of the delivered energy is us
e.g., to create large fluctuating shape changes of the enz
complex. Thus one expects a state-dependent stoch
force in the reaction cycle.

The Langevin equation, which describes the movemen
a substrate molecule through the enzymatic reaction cy
can be derived@24# from the corresponding Fokker-Planc
equation~4!,

dx

dt
5h~x!1g~x!G~ t !. ~9!

FIG. 11. Schematic representation of the enzymatic reaction
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7122 56MANFRED SCHIENBEIN AND HANS GRULER
As expected, the driving forceh(x), as well as the stochasti
force g(x)G(t), are state dependent. A white noise is a
sumed forG(t) with a state-dependent strengthg(x). The
driving force h(x) is proportional to the difference of th
forward and backward reactions. However, in addition,
x-dependent stochastic force creates a drift term, the
called spurious drift or noise-induced drift@24#. It drives the
system toward states where the diffusion is decreased.

h~x!5D ~1!~x!2
1

2

dD~2!~x!

dx
. ~10!

The stochastic forceg(x) is proportional to the square roo
of the diffusion termD (2)(x),

g~x!5D ~2!~x!1/2. ~11!

The state-dependent stochastic force means that
quasitemperature is a function of the position of the reac
cycle.

A potentialV(x), which is relevant for the enzymatic re
action, can be derived from the driving forceh(x) @11#,

h~x!52
dV~x!

dx
. ~12!

As expected, this potential is proportional to the integral
the drift term, D (1)(x), but, in addition, a function of the
state-dependent diffusion term,D (2)(x):

V~x!52E
0

x

D ~1!~x!dx1 1
2 D ~2!~x!. ~13!

The potential difference per cycle

DV52E
0

2p

D ~1!~x!dx ~14!

is simply given by the drift term, since the spurious dr
plays only a role within the cycle. The potential differen
has to be supplied from an external source in order to ob
the same physical state in every cycle@V(x)5V(x1n2p)#.

In the case of constant forward and backward reac
coefficients, the potential is simply a straight line within o
cycle,

V~x!5V~0!2D ~1!x5V~0!2KM~ f 2b!x. ~15!

The potential function has a profile of a sawtooth if seve
cycles are regarded.

Our long term goal is to measure the steady-state di
bution p(x) within one reaction cycle for synchronized e
zymes. Then the experimental results are compared with
oretical predictions@Eq. ~4!#, where the state-dependent dri
D (1)(x), and diffusion, D (2)(x), terms, or the state
dependent forward,f (x), and backward,b(x), reaction coef-
ficients are fitting functions. We hope to find the predict
state dependence in the driving force as well as in the
chastic force. Next, the Fokker-Planck equation will
solved for a special case where the forward and backw
reaction functions are constants.
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Constant transition coefficients

The Fokker-Planck equation is a parabolic different
equation if the transition probabilitiesf andb are constant,

]p

]t
52F

]p

]x
1D

]2p

]x2
. ~16!

This partial differential equation can be solved by making
separation ansatz

p~x,t !5eltQ~x!. ~17!

The eigenvaluesl are obtained by inserting Eq.~17! into Eq.
~16!,

lk52 ikF2k2D. ~18!

The solution then reads

p~x,t !5 (
k52`

`

~Cke
i [kx2vkt!])e 2k2Dt, ~19!

where the eigenfunctionQ(x) is approximated by a Fourie
series

Q~x!5 (
k52`

`

Cke
ikx. ~20!

The complex numbersCk are given by the starting condi
tions. Solution~19! has the structure of a damped travelin
wave ~see Fig. 12!. The drift term F determines the fre-
quencyvk of the traveling wave,

vk52k F52kKM~ f 2b!. ~21!

As expected, the wave is running clockwise forf .b and
counterclockwise forf ,b. No traveling wave is expected
for zero drift.

The predictions of this simple model can be compa
with already performed experiment:~i! The transduction co-
efficient,kE , can be measured and, thus, the drift termF can

FIG. 12. The normalized occupation of the last step is calcula
by means of the Fokker-Planck equations and shown as a func
of time. At t50 the reaction is switched on.



-

ul-

tic
tio
t
nt
zy

a

er
w

e

fi-

g
i

he
e

on
if
p
at
-
t
se

iled
inu-
ed:
nt

e
but

d

by
en-

56 7123ENZYME KINETICS, SELF-ORGANIZED MOLECULAR . . .
be determined asF52pkE . ~ii ! The diffusion termD deter-
mines the damping timetM of the traveling wave

tM5
1

k2D
5

2

k2KM
2 ~ f 1b!

. ~22!

This damping timetM is identical with the previously dis
cussed memory time of the enzymatic reaction.tM can be
measured and, thus, the diffusion termD can be determined
asD51/tM for the k51 mode. The ratio of drift and diffu-
sion coefficient is simply the normalized memory time m
tiplied by 2p:

F

D
52p

tM

t
. ~23!

In the Michaelis-Menten approximation, the enzyma
reaction is characterized by one coefficient—the transduc
coefficientkE , which is proportional to the drift coefficien
of the Fokker-Planck equation. The drift coefficie
F(52pkE) characterizes the deterministic part of the en
matic reaction. The diffusion coefficientD(51/tM) of the
Fokker-Planck equation is a second coefficient which ch
acterizes the stochastic part of the enzymatic reaction.

Next the forward and backward coefficients will be det
mined. In the approximation used, one has three unkno
coefficientsf , b, andKM , which can be determined by th
experimentally determined cycle timet, the memory time
tM , and the number of states,M . The forward transition
coefficient f and the ratio of backward and forward coef
cient,b/ f , are

f 5
M

2p

1

t
1

1

2p S M

2p D 2 1

tM
, ~24!

b

f
5

12
2p2

M

tM

t

11
2p2

M

tM

t

. ~25!

One obtainsf 56.5 s21 and b'0.2 s21, with t51.54 s,
tM /t52.8, andM'60. As expected for a good workin
chemical production plant, the back reaction coefficient
very small compared with the forward reaction. Next, t
Fokker-Planck equation will be solved for a state-depend
forward reaction.

State-dependent forward reaction

An enzymatic reaction with its characteristic reacti
cycle cannot simply be explained by constant drift and d
fusion coefficient, since rate-limiting chemical reaction ste
are known. Let us assume a scenario with a fast st
dependent forward reactionf (x), but a slow backward reac
tion b! f , as, e.g.,f (x)Þ0 andb50. The state-dependen
forward reaction function can be described by a Fourier
ries

f ~x!5 f 0 (
k

Fke
ikx, ~26!
n
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wheref 0 determines the strength of the reactions, andFk the
profile within the reaction cycle.f 0 as well asFk should be
determined by experiments. We do not have such deta
and precise experiments. To proceed further, a simple s
soidal reaction profile, as seen in Fig. 13, is assum
v(x)5 v̂ cos2(x/2). The amplitude of the state-depende
forward reaction function is described byv̂.

The Fokker-Planck equation~4! can be written in dimen-
sionless units if a dimensionless timet85 f 0KMt is intro-
duced:

f 0

]p

]t8
52

]

]x
$ f ~x!p~x,t8!%1

KM

2

]2

]x2
$ f ~x!p~x,t8!%.

~27!

Again, the separation ansatz~17! can be used to determin
the eigenvalues, since the periodic function is only state
not time dependent. The unknown eigenfunctionQ(x) is ap-
proximated by a Fourier series~20!.

The eigenvalueslk are obtained by inserting Eqs.~17!
and ~20! into Eq. ~27!,

lkCk52~ ik1 1
2 KMk2!$ 1

4 v̂Ck211~11 1
2 v̂ !Ck1 1

4 v̂Ck11%.
~28!

One obtainsl0C050 for k50. The eigenvaluel0 is zero,
since the total number of enzymes involve
(2pC05*p(x)dxÞ0) is described by the coefficientC0.
The other eigenvalueslk can be calculated in the following
way: Two tridiagonal systems of equations, are obtained
treating separately the symmetric and antisymmetric eig
functionsQs , andQa , and splitting the eigenvaluel into its
real and imaginary parts (lk5mk1 ivk)

1
4 v̂Ck211S 11

m

KMk2
1

1

2
v̂ D Ck1 1

4 v̂Ck1150, ~29!

1
4 v̂Ck211S 11

v

k
1

1

2
v̂ DCk1 1

4 v̂Ck1150. ~30!

FIG. 13. The forward reaction functionf (x) for various values

of v̂.
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FIG. 14. Normalized real (m) and imaginary (v) part of the first two eigenvalues of the cosine potential are shown.
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The solution for the eigenvalues is obtained by solving th
tridiagonal equation system by the continued fraction te
nique @24#. The first and second eigenvalue, are shown a
function of 11 v̂ in Fig. 14.

The imaginary partv of the eigenvalue describes the fr
quency of the traveling wave in the chemical reaction cyc
First, the frequencyv1( v̂)8 is calculated from Eq.~21! by
taking the mean of the forward reaction functio
v1( v̂)85v1(0)(11 v̂). In the case of no state-depende
function, the frequencyv1(0) is KM f 0. In this approxima-
tion, the frequency increases linearly with the amplitudev̂ of
the state-dependent forward reaction function. However,
frequencyv( v̂) calculated from the state-dependent forwa
reaction function@Eq. ~30!# can be described by a power la

vk~ v̂ !5kv1~0!~11 v̂ !n. ~31!

The exponentn, is determined from Fig. 14 to be 0.50. Th
discrepancy between the exact calculation and the appr
mation is easy to understand, since the low values of
forward reaction function are more strongly weighted th
the high values: The traveling wave moves faster as expe
from the mean forward reaction approximation ifv̂,0, and
slower if v̂.0. The wave stops traveling if the forward re
action is zero at a certain position in the reaction (v̂→21),
and thereby the eigenvaluev approaches 0.

The real partm of the eigenvalue describes the dampi
of the traveling wave in the chemical reaction cycle. Fir
the damping coefficient,m1( v̂)8, is calculated from Eq.~21!
by taking the mean forward reaction functio
m1( v̂)85m1(0)(11 v̂). In the case of no state-depende
function, the damping coefficientm1(0) is KM

2 f 0/2. In this
approximation, the damping coefficient increases linea
with the amplitude of the state-dependent forward reac
e
-
a

.

t

e

xi-
e

n
ed

,

t

y
n

function. However, the damping coefficientm1( v̂), calcu-
lated from the state-dependent forward reaction function@Eq.
~22!#, can be characterized by two features:~i! The damping
reaches a finite value forv̂→21. Here, one has to remembe
that in this case the frequency of the traveling wave
proaches zero.~ii ! A power law is obtained forv̂.0,

mk5k2m1~0!~11 v̂ !h. ~32!

The exponenth50.66 is determined from Fig. 14.
This calculation shows that the enzymatic reaction can

simply be approximated by taking the average of the forw
reaction function. To proceed further, one needs new ty
of experiments where the substrate molecule is observed
ing the enzymatic reaction. Next, the Fokker-Planck equa
will be solved for a state- and time-dependent forward re
tion function f (x,t).

State- and time-dependent forward reaction

An enzymatic reaction can be influenced by an exter
signalSex. For example, light can alter the enzymatic rea
tivity if one of the active groups of the enzyme comple
absorbs light. We showed experimentally that the enzy
activity can be enhanced by light@17# and that the catalytic
cycle of the enzymes can be synchronized by periodic
applied light flashes@18#. Let us assume again a scenar
with a fast forward reactionf (x,Sex), but a negligible back-
ward reactionb'0. In addition, the forward reaction shoul
be a function of an extracellular signal. The forward react
function can be described by a Fourier series

f ~x!5 f 0 (
k

Fk~Sex!e
ikx. ~33!
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FIG. 15. The typical resonance behavior shown for the first eigenfunctionQ1(x50). Five curves with different values ofv̂ are plotted
against the inverse of the frequencyv.
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The strength of the enzymatic reaction and its profile aref 0
and Fk(Sex), respectively, which should be determined
experiments, but we do not have such detailed and pre
experiments. To proceed further, a simple sinusoidal reac
profile is assumed:f (x)511 v̂(t)cos2(x/2). The amplitude

v̂(t)5 v̂0sinv8t of the state-dependent forward reaction co
ficient is temporal modulated with the external frequencyv8.

Note that the drift termh(x,t) in the Langevin equation
~9!, as well as the potentialV(x,t), are time dependent. Thu
one has a parametric process, and expects that the respo
maximum when the externally applied frequency is appro
mately equal to the internal frequency~parametric reso-
nance!. Additionally, one deals with a system where stoch
tic processes are involved. Stochastic resonance is an e
which is manifested in multistable nonlinear systems driv
simultaneously by noise and a weak periodic function. Th
stochastic processes can help to change the enzymatic
and the enzymatic activity can be enhanced if the freque
of the externally applied signal is approximately equal to
intrinsic frequency~stochastic resonance!.

The solution of the Fokker-Planck equation with a pe
odic state- and time-dependent coefficients can be c
structed by using Floquet’s theorem

p~x,t !5e mt (
n

dne invtQn~x!. ~34!

The unknown eigenfunctionQn(x) can again be expresse
by a Fourier series. The general solution then reads

p~x,t !5e mt (
n

dn (
k

cn
k e invte ikx. ~35!

The coefficientsdn and cn
k are given by the starting cond

tions.
se
n

-

e is
i-

-
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n
e
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y
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-
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The eigenvalue,lk(5mk1 ivk), is obtained by inserting
Eqs.~33!–~35! into Eq. ~27!,

~mk1 invk!cn
k52S ik1

KM

2
k2D $ 1

4 v̂0cn21
k211~11 1

2 v̂0!cn21
k

1 1
4 v̂0cn21

k112 1
8 ~ v̂0cn

k211 v̂0cn
k11

1 v̂0cn11
k211 v̂0cn11

k11!%. ~36!

One obtainsm0c0
050 for k50 and n50. The real eigen-

value m0 is zero, sincec0 is a positive quantity which de
scribes the total number of enzymes.

The discussion below will be restricted to the simple ca
with m050, where the probability densityp(x,t) is then de-
scribed by a sum ofundampedtraveling waves,

p~x,t !5(
n

dn (
k

cn
ke i ~nvt1kx!

5(
n

dne invtQn~x!.

Only the first eigenfunctionQ1(x) is calculated to show the
basic features of how an enzyme can be enslaved by an
ternal signal. Becausep(x,t) must be real,Q21(x) is given
by the complex conjugate ofQ1(x).

Let us now look howQ1(x) depends on the frequencyv.
For this purpose we determine the quantitiesc1

k in depen-

dence ofv and vary the height of the potentialv̂. The results
are given in Fig. 15, whereuQ1(0)u is plotted against 1/v.
The calculated curve demonstrates that the amplitude of
undamped waves is a function of the external frequency.
effect is maximum if the external frequency is approximate
the same as the intrinsic frequency. The calculated maxim
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is very sharp, as actually observed by the experiments~see
Fig. 3 of Ref.@18#!. An enzymatic reaction can be enslav
by an external signal, and the model of the parametric
stochastic resonance fits the experimental data very wel

SUMMARY

The catalytic cycle of an enzyme is quite well appro
mated by a set of differential equations, first order in time
the number of differential equations is much higher than
number of rate-limiting states. Every chemically we
defined taxometric state again has several physically w
distinguished states~conformational states! which are impor-
tant for the working enzyme.

A system having many discrete states can be appr
mated by a system having continuous states. The syste
now characterized by a probability density function that s
isfies a second-order partial differential equation. The d
term is responsible for the mean duration of the cataly
reaction and the diffusion term for the width of the cyc
time distribution, or in other words, the drift term is th
cause for a traveling probability wave within the reacti
cycle and the diffusion term is the cause for the damping
the traveling wave.

An enzymatic reaction can be enslaved by an exte
signal if the damping time is much longer than the cy
time. In addition, at least one of the rate-limiting steps in
reaction cycle has to be sensitive to the external signal.
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APPENDIX A: FOKKER-PLANCK EQUATION

ṗ152~ f 11b1!p11 f MpM1b2p2 ,

ṗm52~ f m1bm!pm1 f m21pm211bm11pm11 ,

m52, . . . ,M21,

ṗM52~ f M1bM !pM1 f M21pM211b1p1 .

After introducing a new variablex,

x52p
m

M
5mKM ,
d

f
e

ll-

i-
is

t-
ft
c

f

al

e

art

s

we obtain

ṗ~x!5 f ~x2KM !p~x2KM !2 f ~x!p~x!1b~x1KM !

3p~x1KM !2b~x!p~x!.

Taylor expansion of the probabilities is the main step
achieve a partial differential equation of the diffusion type

p~x2KM !5p~x!2KM

]p

]x
1

1

2
KM

2 ]2p

]x2
••• ,

p~x1KM !5p~x!1KM

]p

]x
1

1

2
KM

2 ]2p

]x2
••• .

If we stop the expansion after the orderKM
2 , we obtain the

following equation:

]p

]t
5

]

]x H 2KM@ f ~x!2b~x!#1 1
2 KM

2 ]

]x
@ f ~x!1b~x!#J p~x!.

~A1!

APPENDIX B: TRIDIAGONAL RECURRENCE RELATION

Using matrix notation, Eq.~36! can be written as

A1c¢n211~A02 invE!c¢n1A1c¢n1150. ~B1!

This tridiagonal vector recurrence relation again can
solved by means of continued fractions if we truncate t
system at an upper limitn5N. The vector recurrence rela
tion can be solved if we define new matricesSn in the fol-
lowing way:

c¢n115Sn•c¢n . ~B2!

Inserting this in Eq.~B1!, we obtain recurrence relations be
tweenSn ,

Sn2152$~A02 invE!1A1Sn%
21A1 , ~B3!

Using matrix inversion routines we can solve Eq.~B3! nu-
merically up ton51. At this stage the vectorc¢1 and there-
fore all other vectorsc¢n can be determined, becausec¢0 is
known:

c¢15S0•c¢0 , ~B4!

c¢n5Sn•Sn21 ...S1•S0•c¢0 . ~B5!
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